Как вернуть купленный ж/д билет?
Любой купленный на tutu. ru ж/д билет можно сдать в соответствии с правилами РЖД.
Возврат осуществляется прямо в личном кабинете Туту. ру или в железнодорожных кассах.
Если вы оплатили электронный ж/д билет банковской картой, деньги вернут на ту же карту. В остальных случаях деньги выдаются наличными в кассе в момент возврата.
При сдаче купленного билета не возвращаются сервисные сборы и комиссии, дополнительно РЖД взимает рекламационный сбор.
Общие потери при сдаче билета зависят от суммы и способа оплаты. За один сданный билет в среднем удерживается около 500 рублей.
При возврате билета менее чем за 8 часов до отправления поезда штрафы РЖД существенно увеличиваются.
Можно ли оплатить билет картой? А это безопасно?
Да, конечно. Оплата происходит через платежный шлюз процессингового центра Gateline. net. Все данные передаются по защищенному каналу SSL 3.0.
Шлюз Gateline. net был разработан в соответствии с учетом требований международного стандарта безопасности PCI DSS. Это первое в России процессинговое программное обеспечение, которое успешно прошло аудит по версии 2.0.
Система Gateline. net позволяет принимать оплату картами Visa и MasterCard, в том числе с использованием 3D-Secure. Verified by Visa и MasterCard SecureCode.
Платежная форма Gateline. net оптимизирована под различные браузеры и платформы, в том числе и для мобильных устройств.
Почти все ЖД агентства в интернете работают через данный шлюз.
Что такое электронный билет и электронная регистрация?
Покупка электронного билета на Tutu. ru — современный и быстрый способ оформления проездного документа без участия кассира или оператора.
При покупке электронного ж/д билета места выкупаются сразу, в момент оплаты.
После оплаты для посадки в поезд нужно:
либо пройти электронную регистрацию;
либо распечатать билет на вокзале.
Электронная регистрация доступна не для всех заказов. Если регистрация доступна, ее можно пройти, нажав на нашем сайте соответствующую кнопку. Эту кнопку вы увидите сразу после оплаты. Затем для посадки в поезд понадобится оригинал удостоверения личности и распечатка посадочного купона. Некоторые проводники распечатку не требуют, но лучше не рисковать.
Распечатать электронный билет можно в любое время до отправления поезда в кассе на вокзале либо в терминале саморегистрации. Для этого нужен 14-значный код заказа (вы получите его по СМС после оплаты) и оригинал удостоверения личности.
Актуальна ли информация на сайте?
Technique
Thermoluminescence (or TL) is a geochronometric technique used for sediment. The technique has an age range of 1,000 to 500,000 years. The technique is used on sediment grains with defects and impurities, which function as natural radiation dosimeters when buried. Part of the radioactive decay from K, U, Th, and Rb in the soil, as well as contributions from cosmic rays, are trapped over time in sediments. The longer the burial, the more absorbed dose is stored in sediment; the dose is proportional to a glow curve of light obtained in response when the sample is heated or exposed to light from LEDs. Greater light doses indicate an older age.
Sample grain zeroing is usually obtained by exposure to sunlight, so analyses are carried out in a darkroom. Each soil naturally has its own particular dose rate, so the in situ Dose Rate is obtained with a portable gamma ray spectrometer (read as Grays/ka). Material for analysis is collected in light-tight conditions. Common grain size used is fine silt (4-11 microns). The sample is treated with various acids to remove carbonate and organics. The sample is irradiated with a B source to artificially age the sample; the sample is preheated and finally heated to 5000C in a vacuum oven with a nitrogen atmosphere under a photomultiplier tube. The tube measures light emitted by the sample (in Grays), providing an Equivalent Dose calculation.
Age = Equivalent Dose/Dose Rate
Thermoluminescence is used in conjunction with U-series, 14 C, stratigraphy, and associated biological processes whenever possible.
Applications (numerical ages are obtained):
Loess and silt deposits
Sand dunes or sheets
A and C soil horizons (rarely B horizons)
Fissure fills
Volcanic ash and glass
Colluvial and alluvial materials
Fluvial deposits--floodplain, deltaic, lacustrine, coastal
Paleodischarge deposits--tufa mounds, with windblown eolian additions
Rock shelters, paleo-Indian mounds, cave floors
Bog, peat, or marsh deposits
Yucca Mountain Project
Fault trenches (time of movement on faults)
Cinder cone development (sand sheets beneath cones)
Paleodischarge sites (dating the time of active discharge)
Norman, Oklahoma Toxic Landfill Project
Evolution of deltaic and floodplain sediments (scouring history)
Associated loess formation (timing of glacial episodes)
Las Vegas Valley Project
Paleodischarge sites
A-horizons of soils
Chemehuevi Formation near Lake Mojave and Lake Mead (tracing large eddy currents and time of miximum fluvial deposition)
Albuquerque, New Mexico Geologic Mapping
Rio Rancho fault displacement
Isleta Reservation trench (Hubble Fault movement)
Yakima, Washington--Yakima Indian Nation
Fault trenches (dating the time of movement on faults)
Greater Yellowstone Project
Loess deposits (timing of glacial episodes)
Fault trenches (dating the time of movement on faults)
A - and B-horizons of soils (correlation of soils between trenches)
Technique
Based on radiation damage (tracks) due to spontaneous fission of 238 U. When combined with temperature required for annealing of the tracks in specific minerals can yield cooling ages (e. g. age of most recent uplift, pluton emplacement and cooling, etc.). Requires high-U mineral, normally apatite or zircon. Low temperature (<200°C) thermal history. This capability exists in Reston only.
GD Library - The Basics of Drawing with PHP
Send to a Friend via Email
Recipient's Email
This field is required.
Separate multiple addresses with commas. Limited to 10 recipients. We will not share any of the email addresses on this form with third parties.
Rectangle With Text
With this code we are creating a PNG image. In our first line, the header, we set the content type. If we were creating a jpg or gif image, this would change accordingly.
Next we have the image handle. The two variables in ImageCreate () are the width and height of our rectangle, in that order. Our rectangle is 130 pixels wide, and 50 pixels high.
Next we set our background color. We use ImageColorAllocate () and have four parameters. The first is our handle, and the next three determine the color. They are the Red, Green and Blue values (in that order) and must be an integer between 0 and 255. This website gives you the integers for basic web colors if you are not familiar with choosing colors in this format. In our example we have chosen red.
Now we enter the text we want to appear in our graphic using ImageString () . The first parameter is the handle. Then the font (1-5), starting X ordinate, starting Y ordinate, the text itself, and finally it's color.
Finally ImagePng () actually creates the PNG image.
Periodic Table of Elements
Element Gadolinium - Gd
Comprehensive data on the chemical element Gadolinium is provided on this page; including scores of properties, element names in many languages, most known nuclides of Gadolinium. Common chemical compounds are also provided for many elements. In addition technical terms are linked to their definitions and the menu contains links to related articles that are a great aid in one's studies.
Physical Properties of Gadolinium
Regulatory / Health
Note: this data represents naturally occuring levels of elements in the typical human, it DOES NOT represent recommended daily allowances.
Blood /mg dm -3. n/a
Bone /p. p.m. n/a
Liver /p. p.m. n/a
Muscle /p. p.m. n/a
Daily Dietary Intake: n/a
Total Mass In Avg. 70kg human: n/a
Discovery Year: 1880
Name Origin: Named after Finnish minerologist J. Gadolin.
Abundance of Gadolinium:
Earth's Crust /p. p.m. 7.7
Seawater /p. p.m.
Atlantic Suface: 5.2E-07
Atlantic Deep: 9.3E-07
Pacific Surface: 0.0000006
Pacific Deep: 0.0000015
Atmosphere /p. p.m. N/A
Sun (Relative to H=1E 12 ): 13.2
Sources of Gadolinium: Chief ors are monazite and bastnasite. World production is around 400 tons annually. Primary mining areas are USA, Brazil, India, Sri Lanka, Australia and China.
Uses of Gadolinium: Used in magnets, refractories, magnets, neutron radiography and is alloyed with iron for magneto-optic recording devices.
Additional Notes:
Gadolinium Menu
References
A list of reference sources used to compile the data provided on our periodic table of elements can be found on the main periodic table page.
Related Resources
Answers many questions regarding the structure of atoms. Molarity, Molality and Normality
Introduces stoichiometry and explains the differences between molarity, molality and normality. Molar Mass Calculations and Javascript Calculator
Molar mass calculations are explained and there is a JavaScript calculator to aid calculations. Chemical Database
This database focuses on the most common chemical compounds used in the home and industry.
Citing this page
If you need to cite this page, you can copy this text:
Kenneth Barbalace. Periodic Table of Elements - Gadolinium - Gd. EnvironmentalChemistry. com. 1995 - 2014. Accessed on-line: 10/17/2014
http://EnvironmentalChemistry. com/yogi/periodic/Gd. html
Linking to this page
If you would like to link to this page from your website, blog, etc. copy and paste this link code (in red) and modify it to suit your needs:
<a href="http://EnvironmentalChemistry. com/yogi/periodic/Gd. html">echo Periodic Table of Elements: Gadolinium - Gd (EnvironmentalChemistry. com)</a>- Comprehensive information for the element Gadolinium - Gd is provided by this page including scores of properties, element names in many languages, most known nuclides and technical terms are linked to their definitions.
NOTICE: While linking to articles is encouraged, OUR ARTICLES MAY NOT BE COPIED TO OR REPUBLISHED ON ANOTHER WEBSITE UNDER ANY CIRCUMSTANCES.
PLEASE, if you like an article we published simply link to it on our website do not republish it.
No comments:
Post a Comment